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This paper concerns the second phase of an experimental validation programme for a
structural health monitoring methodology based on novelty detection. This phase seeks to
apply one of the methods considered in the first stage of the work on a more realistic
structure, namely the wing of a Gnat aircraft, as opposed to the previously investigated
laboratory structure. The novelty detection algorithm used is that of outlier analysis and
damage is introduced by making several copies of an inspection panel, each with a different
controlled fault. All of these faults were detectable, a single feature was highlighted which
proved capable of separating all the fault conditions from the unfaulted.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The safety gains and financial rewards to be made from developing a robust on-line
structural health monitoring (SHM) system far outweigh the financial and other costs
associated with obtaining such a system. A large proportion of the cost of aircraft
ownership is due to current lengthy inspection procedures. Integrated SHM technology
would significantly reduce inspection times whilst delivering an objective criterion stating
whether or not an aircraft was damaged.

This paper details work carried out as part of an on-going programme of SHM research
at the University of Sheffield, funded by DERA Farnborough. The first phase of the work
[1] looked at the experimental verification of a novelty detection method, carried out using
a model wingbox which consisted of an aluminium panel stiffened with ribs and stringers.
The damage was induced by making a progressive saw-cut through one of the stringers.
The novelty detection method was successful in signaling all the damage states where the
depth of the cut exceeded 5mm. The features used for the analysis were transmissibilities
yNow QinetiQ
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G. MANSON ET AL.346
measured along the stringer. Three novelty detection methods were investigated: kernel
density estimation (KDE), artificial neural network (ANN) and outlier analysis. The last
method proved to be the most robust of the three.

In this paper, the work is extended to diagnosis of local damage on a full-scale structure
- in this case a Gnat aircraft. The damage was effectively introduced into an inspection
panel and as before, transmissibility measurements (across the panel) were used to try and
detect the damage. Outlier analysis was the chosen method of novelty detection
throughout the study.

The layout of this paper is as follows: section 2 describes the experimental layout and
strategy and section 3 shows, visually, how the damage affected the measured
transmissibilities. section 4 discusses the issue of selecting the best features for novelty
detection followed by the results of the outlier analysis in section 5. The paper is completed
with a discussion and some conclusions.

2. THE EXPERIMENTAL PANEL AND DATA CAPTURE

The structure to be tested was a Gnat trainer aircraft. It was not possible to damage the
aircraft, so it was decided to simulate damage to an inspection panel on the starboard
wing. This was accomplished by making 10 copies of the panel; one was left intact and the
remaining nine received controlled damage. One panel was reserved as normal condition
because it proved impossible to exactly match the aircraft aluminium of the true panel. As
close a match as possible was made. The geometry of the panel is shown in Figure 1. (This
figure is schematic and not to be regarded as a precise engineering drawing.)

The panel was fixed to the wing by 23 screws. There were originally 26 threaded holes
but a previous removal of the panel had involved drilling out some of the screws resulting
in damage to three of the threaded holes.

Problems were anticipated during the test as a result of the variability in the attachment
of the panel. Because a different panel was used for each damage state, it had to be fixed
onto the wing prior to the test and then removed. This produced inevitable variations in
the fixing/boundary conditions. An attempt was made to minimize the problem by using a
constant torque electric screwdriver. A more rigorous approach would have been to use a
screwdriver head in a torque wrench and to make sure that the same torque was applied to
215mm
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Figure 1. Geometry of Gnat inspection panel.
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each screw in each test. This was not carried out because: (a) it is simply unrealistic to
assume that degree of care is used in removing and replacing inspection panels and; (b) it
would have been far too time consuming.

As in the previous experimental study [1], it was decided to use transmissibility data in
order to locally monitor the region of interest. The sensors used were piezoelectric
accelerometers of PCB type. Four sensors were used in all: one pair to measure the
transmissibility across the panel in the length direction (T1 and T2 in Figure 2) and one
pair across the width (T3 and T4 in Figure 2). An additional pair were fixed across a panel
diagonal as shown in the photograph in Figure 3; however, the data capture proved too
time consuming to use this pair. The accelerometers were fixed with beeswax.

The wing was excited using a Ling electrodynamic shaker attached directly below the
inspection panel on the bottom surface of the wing. A white Gaussian excitation was
generated within the acquisition system and amplified using a Gearing and Watson power
amplifier.

The transmissibilities were measured using a DIFA Scadas 24-channel acquisition
system controlled by LMS software running on a HP workstation as shown in Figure 4.
Both real and imaginary parts of the functions were obtained. In order to resolve the
defects in the inspection panel, it was assumed necessary to excite modes with
appropriately short wavelengths and hence high frequencies. In order to select a suitable
excitation band, a transmissibility between transducers 1 and 2 was measured in the range
0–2000Hz with the undamaged inspection panel attached.

The panel was then completely removed (in order to give a worst-case damage state) and
the measurement repeated. Comparison between the two transmissibilities confirmed that
the lower frequency modes were insensitive to the damage, so the excitation band for the
main body of tests was selected as 1000–2000Hz. In all cases 2048 spectral lines were
measured.
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Figure 2. Sensor positions for transmissibility measurements.



Figure 3. The wing in the vicinity of the inspection panel showing the positions of the transducers.

Figure 4. The Gnat aircraft with the acquisition system.
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The measurement strategy for each transmissibility was as follows. First, for the
undamaged panel the function was obtained using 128 averages. This was done to provide
a clean reference signal to help with feature selection. Next, 110 measurements were taken
sequentially using only a single average. Of these, 100 would be used to establish the
statistics of the patterns for the novelty detection and 10 would be used for testing. The
single average data was very fast to acquire and the most likely candidates for an on-line
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system. The use of 8-average data was investigated but was rejected on the grounds of
acquisition time.

The second series of tests worked through the damaged panels in the order shown in
Figure 5. Damage states (a), (b) and (c) were holes of diameter 20, 38 and 58mm
respectively. States (d), (e) and (f) were saw-cuts across the width of the panel with (d) an
edge cut of 50mm and (e) and (f) central cuts of extent 50 and 100mm respectively. States
(g), (h) and (i) were saw-cuts along the long axis of the panel with (g) a 100mm edge cut
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5. Schematic of damage states.
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and (h) and (i) central cuts 100 and 200mm long respectively. For each panel, the first
function measured took 128 averages, again this was for reference and feature selection.
The second set of tests on each panel recorded 10 single-shot functions sequentially, all for
testing the novelty detector.

After all the damaged panels had been tested, another set of measurements were taken
for the situation with the undamaged panel to check repeatability. These consisted the
same 11 functions as taken for the damage states: one 128-average measurement and 10
raw measurements. The latter 10 were all for testing the novelty detector.

The next sequence of tests took the same 11 measurements for the situation with the
panel removed completely.

The penultimate series of tests also addressed the problem of repeatability. The
undamaged panel was fixed and tested and then removed four times in order to investigate
the effect of the fixing conditions on the measured features. Only 128-average patterns
were taken. Another important reason for this portion of the programme was to obtain a
range of normal condition patterns which characterized the variation in the fixing
conditions. These could be used to construct the normal condition data for the novelty
detector.

Finally, a 128-average transmissibility was taken with the panel completely
removed again. The object of this test was to investigate test variability which
could not be associated with the fixing conditions, i.e., variability as a result of
environmental changes and instrument drift. This is the least variability which could be
expected.

3. PRELIMINARY INSPECTION OF THE TRANSMISSIBILITIES

After the measurements were taken, an inspection of the 128-average transmissibilities
was made in order to assess the repeatability of the measurements and to form an opinion
of the likely success of the novelty detection in the face of the variability in the
fixing conditions. The following discussion will concentrate on the transmissibility
between transducers 1 and 2, i.e., along the long axis of the inspection panel. Over
all the tests, six normal condition transmissibilities were measured. As stated previously,
2048 spectral lines were recorded over the frequency range 1000–2000Hz. Figure 6
shows the six normal condition transmissibilities between spectral lines 1250
and 1750. There is a high degree of variability in the results. In order to investigate if
this is the result of the fixing conditions, the two transmissibilities obtained when the panel
was completely removed were compared and are shown in Figure 7, again between
spectral lines 1250–1750. There is far less variability in the plots with the panel removed.
This shows that most of the variations in normal condition will be expected from changes
in the fixing conditions when the panels are screwed down. The results for the
‘‘panel removed’’ state give an estimate of the sort of changes in the patterns which
might be expected purely on the basis of changes in the environmental conditions of
the test.

In order to have an effective novelty detection procedure, it is necessary to
select features from the transmissibility patterns which distinguish between the faulted
and unfaulted states, yet are insensitive to the variations due to the fixing conditions.
This will be the aim of the next section: to highlight possible features which,
when presented to the outlier analysis algorithm, will result in the various damage states
being detected.
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Figure 6. Zoomed transmissibilities T12 for the six normal condition states.

1250 1350 1450 1550 1650 1750
Spectral Lines

0.0

5.0

10.0

15.0

20.0

T
ra

ns
m

is
si

bi
lit

y 
M

ag
ni

tu
de

Figure 7. Zoomed transmissibilities T12 for the two states when the panels were removed.
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4. FEATURE SELECTION FOR NOVELTY DETECTION

The procedure for selecting candidate features for detection of one or more of the
damage states was straightforward: each of the 128-average transmissibilities measured
from the various damage conditions was compared to the six 128-average transmissibilities
measured from the unfaulted structure which, using knowledge gained during the wingbox
experiment concerning feature selection, resulted in between one and three areas of interest
being highlighted for each of the four main damage types (namely: no panel, holes, width-
spanning cuts and length-spanning cuts) for each of the transmissibilities.

Figure 8 shows an example of the features selected from one of the transmissibilities. In
this case, the areas of interest used to construct features capable of detecting length-
spanning cuts from the T12 transmissibilities are shown. These features were used to
construct training and testing sets for the outlier analysis algorithm in order to ascertain
whether detection of the various damage cases was possible. Figure 9 shows a zoomed
version of one of the features to give some idea of the differences that were observed
between unfaulted and faulted patterns.

In total, 10 areas of interest were highlighted from the T12 transmissibilities and eight
from the T34 transmissibilities. In the third paper in this series [2], features will be visually
classified as being strong, fair or weak due to the large number of potential features
highlighted: this is not the case in this paper, where the more limited analysis means that
all candidate features can be examined.

It is a simple matter to convert these areas of interest into feature patterns: the
transmissibility function is simply sub-sampled over the required region to give an array of
50 sample points or a 50-dimensional pattern in multivariate statistics terminology.
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Figure 8. Areas of interest to be used to construct features from the measured transmissibilities T12 to detect
the length-spanning cuts.
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Figure 9. Novelty detection feature from T12 for the six undamaged states and the three length slotted panels
states (feature 2 from Figure 8).
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5. NOVELTY DETECTION RESULTS

All the results presented in this section have been obtained using an outlier analysis
algorithm. Details of the method and a description of how threshold levels are calculated
are given in reference [3]. For a more in-depth analysis, readers are referred to reference [4].

Basically, a discordant outlier in a data set is an observation that is surprisingly different
to the rest of the data set and is therefore believed to be generated by some alternate
mechanism; in the present work, this is expected to be a damage mechanism. The main
requirement for performing an outlier analysis is a sufficiently large set of training data
representing the normal condition of the structure. Once this condition is satisfied, a set of
testing data, which may or may not have been recorded from a damaged structure, can be
compared with the training data and judged to be statistically likely or unlikely to have
been generated by the same mechanism.

In section 4 the procedure for feature selection was discussed and 10 features from the
transmissibility T12 were highlighted as candidates for detecting one or more of the main
damage types. Eight features were highlighted from the transmissibility T34: Individual
training sets were constructed for each of these 18 features.

Initially, it was hoped that these training sets would consist of 100 50-dimensional
patterns taken from the first 100 of the 110 1-average transmissibilities recorded using the
undamaged panel during the first series of tests detailed in section 2. However, upon
comparison of the six 128-average transmissibilities recorded using the unfaulted panel, as
discussed in section 3, it became clear that repeatability of measurements due to fixing
conditions was a major issue. It was decided that, in order to obtain a more complete
picture of the unfaulted condition of the structure and also, to avoid many false positives
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in the analysis, it was necessary to use the four extra 128-average unfaulted
transmissibilities to strengthen the training set.

Due to time limitations and the fact that the issue of repeatability was not investigated
until the end of the experimental testing, it was not possible to record another 100 1-
average transmissibilities for each of these four extra tests. An alternative procedure was
adopted: 100 noise patterns were calculated by subtracting the original ‘mean’ 128-average
transmissibility from each of the first 100 original 1-average transmissibilities. These noise
patterns were then added to the four extra 128-average transmissibilities thus allowing the
possibility of training sets consisting of 500 50-dimensional patterns. This decision was
vindicated upon comparison of the results obtained when using the 100 observation
training set and those obtained when using the 500 observation set which more completely
represents normal condition. Only the 500 observation results will be given here.

The procedure for constructing testing sets was less problematic than the training sets.
For each of the same 18 features as described previously, a set of 120 50-dimensional
patterns was stored. The order of these 120 patterns was as follows:

Patterns 1–10 (uf): From the unfaulted panel. Last 10 of the 110 signals.
Patterns 11–20 (f1): Ten signals from the panel with the 20mm diameter hole.
Patterns 21–30 (f2): Ten signals from the panel with the 38mm diameter hole.
Patterns 31–40 (f3): Ten signals from the panel with the 58mm diameter hole.
Patterns 41–50 (f4): Ten signals from the panel with the 50mm width-spanning edge cut.
Patterns 51–60 (f5): Ten signals from the panel with the 50mm width-spanning internal

cut.
Patterns 61–70 (f6): Ten signals from the panel with the 100mm width-spanning internal

cut.
Patterns 71–80 (f7): Ten signals from the panel with the 100mm length-spanning edge

cut.
Patterns 81–90 (f8): Ten signals from the panel with the 100mm length-spanning

internal cut.
Patterns 91–100 (f9): Ten signals from the panel with the 200mm length-spanning

internal cut.
Patterns 101–110 (np): Ten signals with the panel removed.
Patterns 111–120 (uf2): Ten signals with the unfaulted panel reattached.
The terms given in brackets will be used in the tables of results to refer to these sets of

patterns.
The ideal feature would be one which, upon application of the novelty detection

algorithm to the data, would result in all of patterns 1–10 and 111–120 being classified as
inliers and the other 100 patterns being classified as outliers. However, it is accepted that
the more likely situation is that certain features will be sensitive to certain types of damage
yet relatively insensitive to other types. That said, whichever feature is being used, there is
a requirement that all 20 patterns recorded from the undamaged panel be classified as
such.

Rather than plot the results of the outlier analysis for all 18 features, the results will be
tabulated and only certain interesting results will be plotted. Table 1 shows the results
when considering the 10 features relating to transmissibilities T12; while Table 2 shows the
results from the eight features relating to the transmissibilities T34: The first column gives
the spectral line range associated with each feature whilst the second column gives the type
of damage that particular feature was intended to detect (where NP means no panel, H
signifies panels with holes and W and L mean width and length-slotted panels
respectively). The pattern types follow the same order as stated in the above list and
use the previously given nomenclature. The Monte Carlo method discussed in reference [3]



Table 1

Outlier analysis results for transmissibility T12 features using the critical value of 1% test of

discordancy as a threshold value

Spectral range Chosen damage type Number of detections per damage type

uf f1 f2 f3 f4 f5 f6 f7 f8 f9 np uf2

200–350 NP 2 1 2 10 1 6 0 7 0 10 10 10
1325–1425 NP 3 10 10 10 10 10 10 10 10 10 10 8
1900–2000 NP 0 10 1 10 0 1 10 10 10 10 10 7
950–1050 H 1 9 10 10 10 9 10 0 10 10 1 0
1410–1460 H 2 10 10 10 0 10 10 10 1 10 10 1
1800–1900 H 0 10 10 10 10 10 10 0 10 1 10 0
440–490 W 5 1 1 1 10 0 1 1 0 0 10 0
950–1100 W 0 10 10 10 10 10 10 1 10 10 1 0
1400–1500 L 3 10 10 10 10 10 10 10 10 10 10 1
1945–1995 L 1 10 0 0 1 1 8 10 10 10 0 8

Table 2

Outlier analysis results for transmissibility T34 features using the critical value of 1% test of

discordancy as a threshold value

Spectral range Chosen damage type Number of detections per damage type

uf f1 f2 f3 f4 f5 f6 f7 f8 f9 np uf2

600–750 NP 1 6 2 10 1 2 0 8 2 10 10 6
1900–2000 NP 0 9 10 7 10 0 10 10 10 10 10 0
250–350 H 0 2 1 0 5 2 10 4 4 2 10 0
1070–1120 H 1 10 9 10 0 0 8 10 10 10 5 3
1920–1970 W 0 0 8 0 10 0 10 0 0 10 0 1
450–500 L 1 10 10 10 10 10 10 10 10 10 10 10
1050–1100 L 0 10 10 10 0 4 10 10 10 10 6 5
1150–1300 L 0 10 3 0 2 10 10 10 0 10 10 2
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was used to calculate threshold values based upon the critical values for the 1% test of
discordancy: for a 500 observation, 50-dimensional problem this was found to be 120�36:

The first issue which should be mentioned concerns the size of the training set. Earlier in
this section, the problem of repeatability was mentioned and, due to this problem, it was
explained that it was necessary to use a 500 observation training set as opposed to a 100
observation one in order to better represent the range of normal condition data and also to
avoid the occurrence of a large number of false positives. The 100 observation results are
not given here, due to space considerations. However, for the 100-observation training sets
in all 18 cases, the outlier analysis incorrectly classified all 10 of the uf2 patterns as
outlying the normal condition. This is clearly undesirable: a novelty detection scheme
incapable of recognizing unfaulted patterns is of no value. This vindicates the use of the
more representative 500-observation training set.

As stated earlier, the ideal feature would be one which would classify all f1–f9 patterns
and all np patterns as outliers whilst classifying all uf and uf2 patterns as inliers. This
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would give a row in Table 1 or 2 showing 0 10 10 10 10 10 10 10 10 10 10 0; however
examination of these tables shows no such row. The next best thing, is to find a number of
features which at least identify all 10 patterns of one or more fault type while observing the
minimum requirement of inlier classification for all 20 of the unfaulted uf and uf2 patterns.
There are only 4 of the 18 features which satisfy these requirements. Two are features
constructed from the transmissibilities T12; two are based on the transmissibility T34:

Figures 10–13 show plots of the results of the outlier analysis for these four cases.
Figure 10 gives the results using the feature using the spectral range 1800–1900 of

transmissibility T12: This feature was chosen as being likely to identify faults f1–f3, the
three holes. Figure 10 shows that this was the case, with all 10 patterns from each of these
faults resulting in discordancies well in excess of the 120�36 threshold value (shown as a
horizontal dotted line). The correct classification of the uf and uf2 patterns as inliers is also
observed with all discordancy values below threshold. Finally, as well as being able to
detect the faults for which the feature was chosen, the plot shows that the only faults which
were not classified correctly were f7, the length-spanning edge cut, and f9, the longer of the
two length-spanning internal cuts.

Figure 11 concerns the feature constructed from the spectral range 950–1100 of
transmissibility T12 which was chosen as likely to identify faults f4–f6, the width-spanning
cuts. These faults were all identified correctly along with the three holes (f1–f3), and the
two length-spanning internal cuts (f8 and f9). The only faults incorrectly classified using
this feature were again f7, the length-spanning edge cut, and np, the most severe case
where the inspection panel is completely removed.

Figure 12 shows the first of two results taken from the transmissibility T34; using the
transducers across the width of the inspection panel. The feature used is that from the
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Figure 10. Outlier analysis results for feature from spectral lines 1800 to 1900 of transmissibility T12:
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Figure 11. Outlier analysis results for feature from spectral lines 950 to 1100 of T12:
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Figure 12. Outlier analysis results for feature from spectral lines 1900 to 2000 of T34:
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Figure 13. Outlier analysis results for feature from spectral lines 250 to 350 of T34:
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spectral range 1900–2000, which was chosen for identification of the np, panel removed,
condition. Again, the feature detects the fault for which it was intended, perhaps with
slightly lower discordancy values than expected. This minor disappointment is offset by
the fact that the feature has correctly classified faults f6–f9, the length-spanning cuts,
which caused the majority of problems when using features constructed from
transmissibility T12: This makes sense; it might be expected that the transmissibility
across the panel width would be more affected by length-spanning cuts than the
transmissibility over the panel length and vice versa. The analysis also detected faults f2, f4
and f6 correctly but not faults f1, f3 and f5.

The final outlier analysis concerns the feature constructed from the spectral range
250–350 of the T34 transmissibilities. This was chosen to identify the panels with holes, f1–
f3, but Figure 13 shows that it proved unable to detect these faults. The only faults which
this analysis managed to correctly classify were f6, the largest width-spanning cut, and the
panel-removed condition.

Examination of these four analyses shows that it is actually possible to completely detect
all 10 fault conditions (nine faulted panels and missing panel) by using only two features.
These features are those constructed from lines 1800 to 1900 of T12 as shown in Figure 10,
and those constructed from lines 1900 to 2000 of T34 as depicted in Figure 12. This implies
that both transmissibilities are required to give detection of all faults.

All threshold values were calculated using the Monte Carlo method outlined in
reference [3] based upon the critical value of 1% test of the discordancy. There is however
a school of thought [5] that argues that it is perfectly acceptable practice to set a threshold
value as being slightly greater than the highest discordancy value of all the testing patterns
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taken from the unfaulted structure. Accepting this argument allows Tables 1 and 2 to be
adjusted, with the results given in Tables 3 and 4. The new, manually set, threshold values
are given in the tables for each feature. The four previously discussed cases keep the same
threshold values as it is only deemed correct to raise threshold values thus giving a more
stringent test than the 1% test.

Tables 3 and 4 show that the most obvious effect of this alteration of the threshold
values is a column of zeros in the uf and uf2 columns indicating that the unfaulted patterns
would be correctly classified as inliers. An equally obvious effect of this increase in the
threshold values is that the method is less sensitive to damage. All numbers in the
f1–f9 columns and the np column decrease or stay the same compared to the entries in
Table 1 or 2. In some cases, the raising of the threshold level eliminates much of the effect
of what initially appeared to be a potentially useful feature. For example, consider the
feature constructed from the spectral range 1900–2000 of transmissibility T12: Examina-
tion of the relevant row in Table 1 shows that, with a threshold value of 120�36; the
analysis could correctly classify faults f1, f3, f6–f9 and np but 7 of the 10 uf2 patterns were
wrongly classified as outliers. Raising the threshold level to 600 is sufficient to correctly
Table 3

Outlier analysis results for transmissibility T12 features using manually set threshold values

Spectral range Threshold value Number of detections per damage type

uf f1 f2 f3 f4 f5 f6 f7 f8 f9 np uf2

200–350 1000 0 0 0 0 0 0 0 0 0 0 10 0
1325–1425 600 0 8 10 10 10 10 1 10 10 6 10 0
1900–2000 600 0 4 0 0 0 0 0 0 3 10 10 0
950–1050 250 0 2 10 10 10 0 10 0 1 10 0 0
1410–1460 160 0 10 9 10 0 10 10 10 0 10 10 0
1800–1900 120 0 10 10 10 10 10 10 0 10 1 10 0
440–490 300 0 0 0 0 10 0 0 0 0 0 10 0
950–1100 120 0 10 10 10 10 10 10 1 10 10 1 0
1400–1500 200 0 10 10 10 10 10 10 10 10 10 10 0
1945–1995 300 0 3 0 0 0 0 0 0 0 10 0 0

Table 4

Outlier analysis results for transmissibility T34 features using manually set threshold values

Spectral range Threshold value Number of detections per damage type

uf f1 f2 f3 f4 f5 f6 f7 f8 f9 np uf2

600–750 220 0 0 0 4 1 1 0 0 0 10 10 0
1900–2000 120 0 9 10 7 10 0 10 10 10 10 10 0
250–350 120 0 2 1 0 5 2 10 4 4 2 10 0
1070–1120 180 0 10 6 10 0 0 3 10 10 10 2 0
1920–1970 185 0 0 2 0 10 0 10 0 0 9 0 0
450–500 2500 0 10 0 1 1 0 1 10 10 0 0 0
1050–1100 170 0 10 10 10 0 0 9 10 10 10 5 0
1150–1300 145 0 10 1 0 2 8 10 10 0 10 10 0
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classify all uf2 patterns as inliers; however, examination of the relevant row of Table 3
shows the effect of this action upon fault classification. With the raised threshold, only the
patterns from faults f9 and np are now completely classified as outliers with those from
faults f1, f3, f6–f8 being only partially classified as damage.

The detrimental effect on the features is not universal. There are three cases where the
raising of the threshold value does not have a very destructive effect on the fault detection.
Consider the feature constructed in the range 1410–1460 of transmissibility T12 with the
threshold value raised to 160 (sufficient to cause all unfaulted patterns to be classed as
inliers). Even with the higher threshold, the analysis has managed to correctly classify all
patterns from faults f1, f3, f5, f6, f7, f9 and np. The only degradation in performance is
that only nine patterns of fault f2 are correctly identified, compared to 10 with the Monte
Carlo threshold.

Figure 14 shows the outlier analysis results for the feature constructed from 1400 to
1500 range of transmissibility T12 with the threshold value raised to 200. This has
produced a perfect result; the feature can correctly classify each of the 120 patterns as
either inlier or outlier.

The final outlier analysis of interest concerns the T34: The threshold level was raised to
170 for the feature constructed from 1050 to 1100 spectral range. The new analysis
correctly classifies all patterns from faults f1, f2, f3, f7–f9 (the holes and the length-
spanning cuts) whilst detecting nine of the 10 f6 patterns. (All of the f6 patterns were
correctly classified using the lower threshold.)

The final plot, Figure 15, shows a visualization via principal component analysis of the
500-observation normal condition set from one of the features (in this case, the feature
constructed from the 1900 to 2000 spectral range from T34). Note that the data form five
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Figure 14. Outlier analysis results for feature from spectral lines 1400 to 1500 of T12 with manually set
threshold value of 200.
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Figure 15. PCA visualization of normal condition set for feature constructed from spectral lines 1900 to 2000
of T34:

STRUCTURAL HEALTH MONITORING, II 361
distinct clusters as opposed to one uniform set; the consequences of this fact will be
discussed in the following section.

6. DISCUSSION AND CONCLUSIONS

The overall conclusions from this piece of work are very positive. A single measurement
feature was obtained which served to separate all the fault cases from normal condition.
This is particularly significant given the wide-ranging normal condition data obtained in
the, necessarily restricted, testing programme. However, the feature selection process was
not trivial and a number of points worthy of discussion were raised.

First, the feature selection procedure made use of fault data in order to separate out
intervals from the transmissibility functions which distinguished damaged states from
normal. This is inconsistent with a true novelty detection procedure which would only use
normal condition data to train the diagnostic. This is not necessarily a cause for concern
here, the main problem is that the diagnostic has been optimized to detect damage only of
the type inflicted in the test programme. It is not guaranteed to detect flaws which are at
different positions or even have different orientations from the training sample, although
some generalization is likely. The main problem is that, in general, it will not be possible to
damage the structure in order to obtain training data as was done here. This means that
either true novelty detection is needed or some means of simulating damage is found. If the
former approach is used, it may be possible to form a set of features centred on all the
significant peaks in the transmissibility (and all troughs which are peaks in the reciprocal
transmissibility). In this case, a vector of novelty indices will be obtained and monitored,
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any deviation from normality on any index will be taken to signal damage. If the latter
approach is selected there are again two possible schemes. A model-based method could be
pursued in which a FE model of the structure is used. This would be updated and
validated on the normal state of the structure and the damage could then be simulated
within the model. The problem with this would be the accurate modelling of a potentially
complex structure. In contrast, an experimental approach could be adopted. This would be
based on the assumption that damage will normally manifest itself by a local reduction in
stiffness with a consequent change in resonant frequencies. One might hypothesize that
similar reductions in frequency could be obtained via local increases in mass. Feature
selection could then be performed by (non-destructively) adding mass to the structure and
observing which resonances in the transmissibility are sensitive. An initial study [6] based
on the experimental wingbox used in reference [1] has provided some justification for this
approach.

A second issue raised by the study concerns the selection of the novelty threshold. The
high degree of variability in the fixing conditions of the panel here meant that the coverage
of the normal condition set obtained during the testing programme was rather inadequate;
this is testified by the principal component visualization of Figure 19 which showed that
the five normal condition clusters were actually disjoint. (A further assumption of the
approach was that the noise colour and size from one normal cluster could be imposed
with impunity on the other clusters.) The immediate consequence of this is that the index
values on the normal testing set were not guaranteed to be sub-threshold. In fact, when the
threshold was chosen by the usual assumption of normality of the index distribution,
many supra-threshold excursions were observed over the various features measured. This
problem was overcome by changing the means of prescribing the threshold. Tarassenko’s
approach to threshold setting was modified as follows: instead of setting the threshold as
the highest value observed on the training set, it was fixed at the highest value observed on
a (normal) validation set. (Because of the limited test programme, the normal testing set
was used here; however, with the benefit of hindsight this is no real cause for concern.)

As always, further work is required. The issues discussed above will be addressed via
further laboratory studies. An important consideration which was ignored here concerns
variability in the normal condition due to the loading and environmental conditions. The
consequences of variability in boundary conditions are marked and one would expect the
other sources of variation to be similarly significant.
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